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This paper describes a two-dimensional (2D) upwind residual distribution or fluc-
tuation splitting (FS) scheme (MHD-A) for the numerical solutions of planar magne-
tohydrodynamics (MHD) equations on structured or unstructured triangular meshes.
The scheme is second order in space and time, and utilizes a consistent 2D wave
model originating from the eigensystem of a 2D jacobian matrix of the MHD flux
vector. The possible waves existing in this wave model are entropy, magnetoacous-
tic, and (numerical) magnetic monopole waves; however, Alfven waves do not exist
since the problem is planar.

One of the important features of the method is that the mesh structure has no influ-
ence on propagation directions of the waves. These directions are dependent only on
flow properties and field gradients (for example, it is shown that the magnetoacoustic
waves propagate in the directions of maximum and minimum magnetic strain rates).
The other feature is that no flux evaluations and no information from the neighboring
cells are needed to obtain a second order, positive, and linearity preserving scheme.

A variety of numerical tests carried out by the model on structured and unstruc-
tured triangular meshes show that MHD-A produces rather encouraging numerical
results even though itis the first FS wave model ever developed for multidimensional
MHD. (© 1999 Academic Press

1. INTRODUCTION

Conservative, finite difference and finite volume schemes based on higher order Godt
methods have been effectively used to compute the solutions of hyperbolic systems of |
servative laws [2-5]. Recently, Brio and Wu [6], Zachary and Colella [7], and Dai at
Woodward [8] contributed to the early development of such upwind schemes to solve
magnetohydrodynamics (MHD) equations. Finite volume-type solvers were developet
two dimensions (2D) by Aslan [9-13], by Zachae¥al. [7], by Powellet al.[14, 15], by
Tanaka [36], by Roet al. [16], and recently by Ryt al. [17] and by Falleet al. [34].
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Most of these schemes were based on evaluating the numerical fluxes across the boun
between cells as a function of left and right states. This paper deals with an alterna
numerical method called the fluctuation splitting (FS) scheme and presents, for MHL
multidimensional FS wave model first introduced by Aslan [18]. The model presented h
includes a pair of fast and slow magnetoacoustic waves, an entropy (contact) wave,
a recently introduced [1] magnetic monopole wave to reduce the numerical problems
to the divergence condition (i.e@, - B = 0). This is an auxiliary condition introduced by
Maxwell’'s equations, and a consistent and convergent discretization of the MHD equati
is dependent on how it is satisfied numerically. A local nonzero divergence of magne
field indicates the existence of magnetic monopoles within the cell, which suggests n
conservation of the magnetic flux across its surface. If no action is taken, this error gr
during the computations, causing an artificial force parallel to the magnetic field (throu
the momentum equation), and destroys the correct dynamics of the flow [19].

One way to handle the nonphysical consequences of nonzero divergence is to em
a nonconservative form of MHD equations, as done by Brackbill and Barnes [19]. Tl
method is unsatisfactory for flows containing strong shocks and discontinuities. Anot
way is to solve a Poisson equation for a scalar potential and correct the magnetic f
with it to eliminate the spurious forces along the magnetic field (see Hujeirat [35] a
references therein). This method is quite expensive and introduces difficulties during
differentiation of the scalar potential to correct the magnetic field. Furthermore, it w
shown by Tanaka [36] that for some cases, an artificial divergence wave should be
along with the Poisson equation to obtain stabilization. Another way is to use stagerred
approach in which the scalar quantities are placed at the center while the vector fields
considered at the cell edges (see Evans and Hawley [32]) in order to consistently discre
Faraday's law to eliminate the commutation error of the divergence and curl operatt
The improvement obtained with this method (comparing with others) is that the maximi
divergence constraint error reduces and remains constant at a lower value during the
evolution.

For the conservative form of MHD equations, the possibility of eliminating such nume
ical problems by means of a numerical magnetic monopole wave was first suggeste
Aslan [1]. Although no numerical results were presented, Aslan observed that the sli
modification of Faraday’s law did not change the MHD wave structure but introducec
new divergence wave in the eigensystem as well as a monopole current sour\z’&(i.),
in Faraday’s law (see also Aslam al.[9, 10]). Why a divergence source should be intro-
duced into Faraday’s law to compensate the nonphysical motions of numerical magr
monopoles (arising from the discretization errors in the magnetic field) can be explainec
carefully analysing Maxwell’s equations for the electric field within moving and statior
ary frames (for details see the book by Jackson [20, Section. 6.1]). It is straighforwarc
show that using Ampere’s law in conservative momentum equation also introduces a so
related toBV - B. Unless this source is identically zero, a spurious Lorentz force in tf
direction of magnetic field [19] will be created.

After Aslan introduced the idea of employing such a divergence source and nonoy
wave in 1993, Powell [14] and Gombatial.[15] applied this idea to the solution of multi-
dimensional MHD equations in 1994. Aslan’s idea worked rather well, mostly eliminatir
the discretization errors due to the nonzero divergence of the magnetic field. After obsen
that his idea was working as well as that of Evans and Hawley [32], Astlah [9] then
succesfully employed the numerical magnetic monopole wave within a Riemann sol
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(on quadrilateral grids) for the simulation of Tokamak-type plasmas, high beta (i.e., kine
pressure- magnetic pressure) explosions, and subsonic and supersonic flows [9, 13].
merical results showed that this finite volume method produced impressive results for c
pressible flows, although it caused bifurcations and spurious oscillations for subsonic flc
The spurious oscillations produced by the wave models used in FS schemes for subs
Eulerian flows were extensively discussed by Mesaros [21], who employed a hyperbo
elliptic splitting scheme. Currently, the extension of this scheme for the subsonic Mt
equations is being investigated by the author.

It is important to understand that the FS scheme presented here utilizes no fluxes <
the modified jacobian matrices are not jacobian of any flux; thus, the present method dif
from that developed by Powell [14], who utilized the fluxes and divergence source explici
Although the present method is developed to account for a divergence source, nume
results showed that the source has only a minor effect and it can be neglected. The ¢
feature of the FS scheme presented here is that for all the test problems, solved on struc
or even highly distorted unstructured meshes, the divergence error reduces with iterati
However, it will be shown by numerical tests that the divergence error reduces slowly
the meshes are made finer, a phenomenon which requires further investigation.

Although some investigators are against the idea of the eight-wave formulation, its suct
cannot be underestimated. It is expected that the recent increase in the developme
such schemes (whether they use eight-wave formulation or not) for the solutions of M
equations in all flow regimes will lead to more accurate investigation of the fusion plasi
dynamics and play an important role in alternative energy production in the future.

Inthe next section, the idea of multidimensional FS schemes originally developed by
[10] will be described in detail. This section will include the description of the FS scher
for scalar advection. Then, how this scheme can be extended to the system of equa
by means of a wave model will be discussed in detail. Section 3 will then describe
FS wave model, MHD-A, for the planar MHD equations. The numerical results obtain
on structured and unstructured meshes for the scalar advection and planar MHD equa
will be given in Section 4. Finally, the conclusion and a look at future work will follow ir
Section 5.

2. THE FLUCTUATION SPLITTING AND WAVE MODELS

In order to understand how a fluctuation splitting scheme can be employed for numer
solutions of a system of hyperbolic equations, it is important to get acquainted with -
details of the scheme for scalar convection since the system is linearized and solve
means of simple waves advecting independently.

2.1. Scalar Convection

The fluctuation splitting scheme was first proposed by Roe [23] for the numerical solut
of linear convection equation

uH—)?%u:O, (1)

wherei = (a, b) is a constant vector. In the work presented here, the source effects are
considered so that the right side of the above equation is replaced by the sBurkce (
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FIG.1. (a)Atriangular mesh with inward normals; (b) median dual cell area that weights n@dd) upwind
fluctuation distribution due to wave direction; (e) discontinuity capturing property of the scheme.

the FS scheme, the solution doma®) (ncluding a total ofNt nodes is triangulated (see
Fig. 1b), and the physical quantities stored at the vertices are approximated by a contint
piecewise linear function

Nt
u, b =Y Ni@ui ), 2

where, in finite element (FE) methods, is called the nodal basis function which has the
propertyN,(Xx) = 8k wheredy is the Kronecker delta function. Multiplying Eq. (1) by a
weight functionw, (X) and integrating over the solution domaiR)(one gets the following
equation for nodé:

Nt Nt
// wEEZNkuk dQ+// wed - Y VNUg dQ://(wgS)dQ. (3)
& iz & k=1 Q

Note that if the weight functions are identical i, the classical Galerkin FE method is
obtained. Usually the global system (3) is built as a sum over the triafgles,

ZT:{//QWKX:NK%O'SF*//&WMg%—')\(likukdsr=//Qw53ds}, 4)

whereSy is the area of triangl@ and the sum inside every triangle runs from 1 to 3. For ¢
linearly varyingu on the triangle it can be verified that

3
o Nk Nk au 1
— =, — = — ) nNgiU, 5
ax 2S5 % 2srk; kIK ©)

whereng; is the component ofi in the x; direction (i.e., inward normals shown in
Fig. 1a). Using Eq. (5), the second integral in Eqg. (4)—from now on called fluctuatio
o] —simplifies to

3 N i 1
¢;:ZT://STWM;EUN&= §2T://5ngdsr o1 = plor. (6)

whereg] are called distribution coefficents (satisfyigg + 81 + 3 = 1) since they
distribute parts of the fluctuation (cell residual) to the three nodes of tridngléhe cell
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fluctuation is then defined as

3 3
1
Dy :E;Ainp,iup:;kpup, @)

since, from geometryj; + i, + iz = 0 (and hencé; + ko + ks = 0) and it can be shown
that®t can also be written as

&1 = kao(up — ug) + ka(uz — uy), 8)

leading to a form which will be used later. The first integral in Eq. (4) leads to the prodt
of duy/at and the so-called mass matiik whose elements are defined as

Me,k=z//&wmkdsr. ()
T

In the FE method it was found that takimg = N, (different from that in the spatial part)
one gets the most stable Galerkin mass matrix for nogieen by

Mok = Z//sr NNk d Sy = Z %(Sl,k = S0k, (10)
T

TEQ/

whereS is now the area of the median dual cell of nddgsee Fig. 1b). The third integral
Eq. (4) can be written as

ETJ//ST wSd§ = &, (11)

where usually the source is split equally over the nodes of triahig@ombining Egs. (6),
(9), (10) results in

d R
S+ pler =8 (12)

The Galerkin FE scheme is obtained by choosing= N, in Eq. (3). In this case, the
distribution coefficents turn int6A- = , leading to a method which is unstable for pure
convection. For stability, an artificial dissipation term must be added, as is done in
Lax—Wendroff scheme, which leads to

1 At
LW
= =+ —k,. 13
¢ 3 + 25 (13)
See [24] for different forms of the distribution function.
When a system of equations is consideggdturn into matrices which should also satisfy
> B =1 for consistency. In this case, the fluctation vector for system becomes

3
&7 = Z KiUi, (14)
i—1
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whereU is the state vector anld; are the jacobians based on edge normals, i.e.,
1 1
Ki = E(Aunx,i + Buny,i) = ERiAi Li, (15)

whereR, L, andA are associated eigenvector and eigenvalue matrices. In the FS sche
either such matrices are directly used for distribution or the distribution is done by me:
of a consistent wave model. The second approach is considered is this paper.

The flow parametelk,, distinguishes the inflow/outflow faces as well as the upstrean
downstream nodes. For the system of equations, each wave of the associated eigens
will have a different flow parameter and contribute to the total fluctuation in an upwir
manner. Wherk; is positive, the flow enter$ throughE;, andi is the downstream node
(while j andk are upstream nodes); otherwigg,is an outflow face andis the upstream
node. Note that becaudé k, =0, either one or two df, must be negative. This factleads to
the development of different upwinding strategies using the sign @fe., see Figs. 1c and
1d for two- and one-node updates, respectively). For instance, defining a smart paran
o* =|o1+ 0203]/2, whereo, is the sign ofk,, one can distinguish one- and two-node
updates. Whew* =0, it is a one-node update and the upwinding strategy requires tf
&7 should be assigned only to the upwind note2+ (o3 — 01)/2 (i.e., i =1, Bj =
Bk = 0); otherwise, it is a two-node update case (€ .+~ 1) andd+ is distributed between
the nodesj = 2+ (03 — 02)/2 andk = 2+ (0, — 1) /2 with different distribution weights
Bj and B«. Although, this procedure was developed by the author and it minimizes t
number of “if” statements in coding, there exist different distribution schemes (see Paill
et al.[24] for a detailed review).

The discretized form of Eq. (12) leads to the following explicit local update, for &ach
which is not in equilibrium (i.e., has a finite fluctation):

ug+1_u[—§Z[ﬁé Zk,uJ ] (16)

hereAt is the time step and + 1 is the new time level. Notice that the average source i
distributed equally to the nodes of

2.2. Properties of FS Scheme

The FS scheme is said to be locapgsitive (P) and hence nonoscillatory (i.e., the
occurence of numerical oscillations which appears close to large changes in the solL
is prohibited) when the new iterat@Jrl is written as the convex average of old iterates a:
[21]

uptt = Z Ciup, 17)

with C¢ > 0 for all k (3~ Cx =1 for consistency). To show how this can be established i
FS schemes, consider the one-node update and assume that node 1 is the downstrean
In this caseks, ks < 0 andk; > 0 by definition, and the total fluctuation is to be assigned t
node 1 only 8, B3 =0 andp; =1, see Fig. 1c). In this case, the updates for all three nod
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of T can be written as

Su; < Su; — At k1U1+k2U2+|(3U3—% ; Sjuj < §ju; +At%, =23
(18)

so that positivity is achieved fa2; = S, — ky At > 0 or At < S /k;, a condition that leads
to the time step limitation. Note that, in the case of a system of equakphscomes the
flow parameter of théth eigenvalue, anfl, — u;) and(us — u;) givenin Eq. (8) turninto
the gradients which are projected onto the associated eigenvector.

The FS scheme is said to Hieearity preserving(LP) if the numerical scheme can
reproduce steady linear solutions of Eq. (1) exactly. This property requires that, in the ti
evolution,®t — 0 as the equilibrium is established Thso that no further update is sent
to its nodes. Although, this is trivially satisfied for the one-node update, the design of
schemes for the two-node updates leads to complications gfnstould be designed as
bounded. AnN-scheme is a positive scheme with the lowest cross diffusion of its cla
and is closely related to the FE method developed by Hughek [25]. In this scheme,
for the two-node update case, the advection speed is written as the sum of compor
parallel to the edges df across the downstream nodes (for instance, Fig. 1d shows tt
the downstream nodes are 2 and 3). The straightforward algebra shows that the fluctua
assigned to these nodes should be giverby= ko (u; — ug) and®z =Kksz(uz — uy) (i.e.,
the parts of Eq. (8)) for upwinding and the condition < min($/kz, S3/ks) should be
satisfied for local positivity. In order to increase the spatial accuracy of this scheme
second order, the formulation presented by Sidilkover [26] can be used. In this formulati
recall that the N scheme leads to the two-node updates
Siug « Slul—i-At[S], Sjuj < Sjuj — At [Kj(u; —u1) — 3| 1= 2,3 (19)
and introduce a limiter function() as a function of the ratio of two fluctuation§, =
—®3/d,. Then transfer the limited contributiol (Q)®, from u, to us to increase the
spatial accuracy of the scheme to second order without any requirement of the informa
from adjacent cells. This procedure is just adding an anti-diffusion term to the N schem
make it LP. Thus the two-node updates in Egs. (19) turn into

~

Sup < Su, — At |:CI)2— vd, — S‘3|':| s Suz < Su3z — At |:CI>3 + Vo, — SST:| s (20)
which can also be written as
Sr Sr
Sup < Suy — At [ $(1-¥(Q)) — 3| SUz < SUz — At [ P3(1-¥(1/Q)) — 3|
(21)

where the coefficents @, and®3 are the nonlinear distribution functiops=1— ¥ (Q)
andgz; =1— ¥ (1/Q), where, for boundness, the limiter should satisfy @, ¥(Q)/Q <1
for local positivity or 0< W < 2 for global positivity. For instance, the minmod limiter
W (r)=max(0, min(r, 1)) and Superbee limite (r ) = max(0, max(min(2r, 1), min(r, 2)))
are examples of such limiters which satisfy local and global positivity, respectively. T
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N scheme with limiters is called a nonlinear N scheme (or NN scheme) and the rea
is referred to Refs. [24, 26, 28] for detailed reviews of different distribution scheme
On structured meshes, the spatial accuracy of the linear FS schemes is second orde
vided that the schemes include LP property. Even though the local truncation error fc
single triangle may not seem to converge to zero as the mesh is refined, the global
vergence and second order accuracy of the NN scheme (when all neighboring triangle:
considered) have been proved by Perthame [27]. In the finite volume or finite differer
schemes, the spatial second order accuracy requires information from neighboring cell
contrast, it is remarkable that the FS schemes produce results as good as those obit
from such conventional schemes, although the operations are confined to only a si
cell [28].

The FS scheme explained here can be extended to the nonlinear advection case inv
the advection speed is approximated by some average and to the system of equatio
which the fluctuation is treated as a sum of linearized simple wave fluctuations. For the sc
advection in 1D there is only one simple wave, moving forward or backward; however,
2D, the orientation angle of the wave adds additional degree of freedoms. For the sys
of equations the complexity is further increased due to the existence of several waves
their possible propagation directions.

2.3. System of Equations

In this work, the conservative forms of MHD equations are integrated, although t
primitive forms of the equations are utilized to derive an eigensystem suitable for the
wave model MHD-A. A nonlinear system of 2D hyperbolic equations is given by th
conservative form

U oF 09G
i Ty 22
at + ax + ay (22)

or by the quasi-linear form

(A By TU=S (29)
where the matricesé\u = % and Bu = % are conservative flux jacobians which give rise
to a hyperbolic system provided that they have a real set of eigenvalues and a comj
set of right and left eigenvectond.is the conservative state vector (including density, mo
menta, magnetic field, and total energy, il&=[p, pV, B, E]", whereE=P/(y — 1) +
1/2pV? + B?/8x, P is the pressure, and is the ratio of specific heatsf, G are flux
vectors, ands is the source vector (which may include the physical sources as well as 1
curvature terms and divergence source as will be explained later).
In order to solve Eq. (22) numerically, integrate it over trianglwith areaQr,

//TUtdQ=<I>T=—//T[g—§+%—S}dQ, (24)

or use Eq. (23) to obtain

//T UtdQ:d>Tz—//T[AUUXJréqu_S]dQ, 25)
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whereU is assumed to be stored at the vertices as in scalar case. Assume furtheristhat
approximated by Eq. (2) so that, since it varies linearly, its gradient is constarik olfein
addition, A, and I§u had been linear ibJ, the above integration could have been performe:
exactly andd+ would have been equivalent to an explicit flux integral along the sid&s of
Unfortunately, the conservative jacobians are not linear in the compondnt®oboth the
Euler and MHD equations, and the exact evaluation of Eq. (25) is not practical. Thus,
FS scheme requires that a decision be made on the numerical calculation of the jacol
since an incorrect calculation may lead to numerical waves propagating with wrong sp
or directions. As suggested by Roe [28] this problem can be overcome by using a pararr
state vectorZ) such thaF, G, andU are all quadratic, and the jacobiafs= & 57, Bz = 32,
and Uz_ ¢ are all linear in the components &t If, in addition, Z is assumed to vary
linearly sat|sfy|ng the same form as Eq. (2), the averﬁg‘eom which the elements of
jacobians are obtained can easily be found from

Z=(Zi+Z+7Z0/3 (26)

wherei, j, k are the vertices of the triangle.
By construction, the conservative property of the linearized system requires that
Rankine—Hugoniot (RH) conditions

-

V-E=[Au2),Bu(2)]-VU withF = (F,G) (27)

are satisfied in both smooth and discontinuous parts of the flow. How this is satisfied by
FS scheme is explained by using Gauss’s law in the homogeneous part of Eq. (24) to

_ / /[vﬁ]dg: (F.G)-df, (28)
It

wheredii is directed inside the triangles. In this cagd! can be written as

aF 9Z -
o = — = .vuUdQ
T / 9Z aU

. ,
~ A - F R
=AZUZ‘1~//VUdQ=g—u~%uﬁdZ=Az(Z)§ UiRi. (29)
i=1

Now assume there exists a discontinuity in the solution and it propagates along a grac
direction, saym, through a triangular mesh (as shown in Fig. 1e). In this case, the fli
integration around this triangle becomes

fis = Fg - iy + Fa - (fiz + i)

— M “
_'.!'Il
T
Th
Th

= (Fg — Fa) - iy = (Fg — Fa) - (30)

similarly, one can also writ§ " Ui = (Ug — Ua)M, so that the fluctuation in Eq. (28)
leads to the RH conditions along the discontinuity

(Fg — Fa) = Au(Z)(Ug — Up). (31)
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This linearization procedure is not unique and the appropriate choice of the param
vector should be based as much as possible on computational cost as well as on phy
motivation. For example, it was shown by Roe [28] that the following parameter vect
gives rise to desired linearity iA;, B,, andU; (for the 2D Euler system)

Z =[/p, V/Pu. V/pv, oHI", (32)

whereH = (E + P)/p is the enthalpy. Using such a parameter vector, the fluctuation c
be written as

' o0F , 9G - .
o Z//[S_ (82 9z y>d9 //[S—(Az, B, - VZ]dQ
= S A B - &

—[5- (Au2). Bu@)) - VUl @, (33)

where, for example,
.1 3 - .1
A, = Q—T//AZ(Z)dQ = ; A (Z)=A,Z) and S= —//S(Z)dQ (34)

andVZ is calculated from the analogue of Eq. (5).
Using the explicit time discretization as in the scalar case, the conservative uptate o
located at vertex, becomes

ur = At“ lzﬁ”% ST<Z) o 35)

where®k is the conservative fluctuation associated withlinearized wave and/, is the
distribution function, i.e., the fraction of the fluctuation sent to veftéy this wave.

In this work, the time evolution is computed with the second order Runge—Kutta mett
which was proved to be positive [31]. This scheme is given by

Uj = U? + At"Req U]
(36)

1
= (U} + At"Reslj]),

1
P = 3U+ 5

2
where Res}]=—>"; ®7/, is called the residual. This scheme is conservative and
leads to overall second order accuracy provided that the local accuracy is at least of se
order (which is the fact satisfied by NN scheme).

2.4. FS Wave Models

In the FS scheme, the total fluctuation is decomposed into scalar compapgnead
then distributed independently to the nodesTah an upwind manner. This procedure is
carried out by means of a wave model in which the waves arising from the normal jacok
(such as given in Eq. (15)) satisfy certain properties. The derivation of a wave mode
easier when the state for the primitive form of MHD equations \é=[p, V, B, P]7)is
used since the eigensystem of its flux jacobian is less complicated and the eigensyste
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the conservative form can easily be obtained by using the state jaddbiardU/dW and
its inverse. It must be noted again that it is the average parameter \&diam which the
components of jacobians are evaluated. The quasi-linear form of the system of equatio
terms of so-called primitive variables can be obtained by premultiplying Eq. (28),by

oW oW ow
e Ay — By— = ’ 37
at + X + ay S (37)

whereS, =U;'Sand A, =U;*AU, , B, =U;'B,U,. In this 2D case, the matrices
A,, andB,, do not commute, and the characteristic lines for unsteady equations canno
defined explicitly unless these matrices are linearized and the residual (or fluctuatior
expressed as a sum of simple wave solutions, as Roe suggested for Euler equations [

Regardless of the fact that the sources affect the solution, one must integrate the hon
neous part of the equations in conservative form. After the wave model is constructed,
conservative integration is easily established by converting the primitive form of equatic
into a conservative form by meansf?! anduU, (i.e.,U,W; =U;, U, A, U, 1= A,). To
show how this is done and how an FS-wave model is derived, the homogeneous pa
Eq. (37) is first linearized as

Wi +[A,(2Z), B,(2)] - VW =0 (38)

and then the fluctuation for the primitive fornb,, = —(A,, B.,) - VW, is treated as the
sum of linearized simple wave solutions. Since the solutions of hyperbolic equations
play a wavelike character, 18V =W (&), where& =X - iy — Ayt defines the wave front
propagating along, = (cosd, sind) with a speed of,. In this case, the time rate ¥f and

its gradient across the wave front will be givenWy = —2, ‘g—"é" and ‘L—‘Q’ﬁg, respectively.
Plugging these into Eq. (38) will then lead to

[_)"9 + (Awa éw) ° ﬁG] dW - 09 (39)

which shows that, is an eigenvalue ard\V is the corresponding eigenvector of the matrix
An= (A,, B,) - fy. Therefore, as long aV # 0 across the wave front, its gradieR\)
can be projected onto the right eigenvectorsAf),. In that case, the flux change across
the discontinuity will be proportional to the change in the conservative state by mean:
the RH conditions. The resulting eigenvalue problem is then defined as

An Rw =A Rw y (40)

whereA, = A, cosd + B, sing is the so-called 2D primitive jacobian matrix,= diag(1,

A2, ..., AN) are its eigenvalues, arfd, is the column matrix of its right eigenvectors (of
which thekth component leads to the conservative one through the reldfier,,rk).
These results show that the gradi&fty (which can be obtained frowW/9ZVZ) can
be written as a superposition & discrete waves summed overall possible direction
©®=0,...,2n),

2r N 2r N
VW = Z Zakrﬁ)ﬁgk or  (Wy,Wy) = Z Zakrﬁj(cosek, sing¥),  (41)
=0 kel =0 kel
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whereay corresponds to the discrestrengthof the wave and* represents its direction,
which is allowed to differ for each wave. One of the simplest models of the form given |
Eq. (41) is obtained from the basic identity [30]

VW sin@, — 61) = — (&, - VW)Rg, + (3, - VW)fg,, (42)

wheres, satisfiesy, - fig, = 0. Denoting th left and right eigenvectors of a primitive system
asrg andf, (with ri'¢3 = dmn) one can obtain a wave model by projecting each term c
the right-hand side of Eq. (42) ontg andr,:

N

VW = Z“l Mo+ b g, Ni+Np=N (43)

k=1
k__il g . kyw Kk — b & ksw 44
a@j_ - SQ2 T Yoy ’ a@z - Sg1 “ Yo, . ( )

sin(@, — 61) sin(@, — 01)

This decomposition can be interpreted as a mesh-independent directional splitting sche
For example, wheé, = 0 andd, = /2 the discretex andy derivatives are treated indepen-
dently regardless of the underlying grid [32]. In model MHD# =6 and6, =0 + /2
were taken, as these were proved to have produced excellent results in several FS-
models for Euler systems [26, 28, 32].

It is expected that the gradieﬁt\N may lead to inconsistencies whenever the spatic
gradients are large. For instance, the spurious pressures may not be able to be balance
the velocity gradients for shear flows in Euler systems [23]. In addition, the fact that t
propagation angles are dependent on the gradients will lead to spurious oscillations (slo\
the convergence) whenever the gradients are negligible. Of course, the stagnation p
will always cause problems if no preconditioning or implicit time stepping techniques a
utilized. Most of these issues have been investigated extensively for the Euler equati
however, the behaviour of the incompressible MHD equations and the flow behaviour r
the stagnation points need further investigation. Some of these issues are currently k
investigated by the author.

The decomposition o W can be transformed t6U usingvU = U, VW. In this case,
the conservative state and flux gradients become

VU= arffils,  VF=(A)aVU = (unaurf, (45)
k k

whererK is thekth right eigenvector of A,), obtained fronrX by rk=uU,rk. Utilizing
these gradients in Eq. (33) then leads to the conservative fluctuatlon

O = (46)

S(2) =) et | 2
k

so that Eq. (35) becomes

At" Z
uprt = = AU [Zﬂekak)nakr —% o, (47)

Q2

wherep/, is the fraction of®r in T (see Eq. (35)) sent to vertéxy the wave moving in
the directionrif .
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3. MHD-A: THE FS WAVE MODEL FOR MHD EQUATIONS

The ideal MHD describes the macroscopic behaviour of the plasma interacting w
external and internal fields and assumes that the conditions

A €
— K1, ——

\%
1 — <1, 48
L To <1 c < (48)

hold, wherep, V, T, andL are, respectively, the characteristic density, speed, time, al
length scales for the problerojs the speed of light; and ande are the conductivity and
dielectric constant of the fluid. With these assumptions, the ideal MHD equations are gi
by the following conservative form with a divergence source [1, 9, 10],

P - PV N 0
PRIRY; . pVV + P — BB Bl
L A o ——| ¥ |V.B, (49)
it B VB — BV Vv
- S L - B-V
. (E+ PV - E(B.V) Ea

whereP* = P + B?/8x is the total pressure. Note that the divergence source is not a cc
sequence of the wave model developed here and its existence would not make a phy
difference a¥v - B should be maintained as zero. It must be noted that in the test proble
presented in this paper, it was observed that the divergence source had only minor effec
the solution. Thus, it was not considered during the numerical iterations. The stabiliza
due to the divergence condition was achieved only by using the magnetic monopole w.
The eigenvalues and eigenvectors associated with the flux jacobian of these eight cons
tion laws are well known (see Jeffrey and Tanuiti [33]), and they correspond to one entr
wave travelling with speell,,; two Alfven waves travelling with speéd, + u; and four
magnetoacoustic waves travelling with spe¥gs- us andV,, - us, whereua, us, anduy

are Alfven, slow, and fast magnetoacoustic speeds, respectively,

2 2
BT 2 _ Bn
_ uA_

2 _
uT—

4rp’ 4p’

1/2]

L 1/2
Uy = |5 [a2+ U3 + U3 F [(@2+ U3 + u2)" — 402 : (50)

2
whereB2 = B2 — B2 is the tangential magnetic field. In dimensional splitting approsigh,
and By, should be considered asor y components of the velocity and magnetic field.

As stated earlier, several Riemann-type upwind schemes based on a seven-wave s
(with zero divergence source) have been developed [6-8, 16]. In this work, yet anot
approach that was first introduced by Aslan [1], then succesfully used by Powell [14, :
and Gombasgt al.[21], will be used. In this approach, Eq. (49) is first reduced to its primitive
form by means obl,, andU ;* and then the eigensystem of its flux jacobian is obtained. B
taking the divergence source into account, it can be shown that the flux jacobian include:
original seven waves mentioned above plus another (numerical monopole) wave mo
with the magnetoacoustic waves. It will be shown later that the strength of this wave is |
the divergence of a magnetic field and it creates dissipation only in the neighborhoo
nonzero divergence arising from the discretization errors in the magnetic field.
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It must be noted here that the magnetic monopole wave and divergence source cann
separated and should be employed together in order for the conservative formto be consi
with the nonconservative form of MHD equations; although the effects of divergence sou
is negligible.

The origin of the magnetic monopole wave and its stabilization effects can be descri
as follows: consider a fluid particle moving on a magnetic field line with a velecitythis
case, the total change of its displacem#&hwill be given byDa¢/Dt = (8¢ - V)v. When
the equation of continuity and Faraday’s law of ideal MHD equations (without divergen
source) are combined one obtaib$B/p)/Dt = (B/p - V)v +Vv/pV - B. Comparing the
total changes af¢ andB/p one sees that, provided they are parallel initially, these vecto
will remain parallel only if the second term on the right side@{B/p)/Dt vanishes.
Otherwise, the fluid particle may cut lines of magnetic force contradicting the ideal MH
limit (i.e., the conditiono — 0). As a result, the magnetic flux around the particle is no
conserved and a spurious magnetic monopole is created. This phenomenon justifies
Faraday'’s law should include a source term related to the divergence of magnetic fiel
eliminate numerical magnetic monopoles (see Jackson [20]).

In order to understand how the divergence source arises from the modification of
flux jacobian @, =dF/0U), one observes that the 1D systéhH+ Fx =U; + A,Ux =0
can be replaced by, + AUy = Sy, WhereSyiy = (A, — Ay)Uy is the divergence source
(appearing on the right side of Eqg. (49)). Note that this procedure does not modify
original seven-wave structure but introduces a numerical magnetic monopole wave to cr
extra dissipation to eliminate the noncommutativity of the numerical divergence and c
operators. With this modification, the primitive jacobiag with a seven-wave structure
turns intoA,, with an eight-wave structure

o
1

"y o O O 0 0 0

BZ 0 _BX 0 O Vx O
yP 0O 0 0 0 0 V]

0 VW O 0 —bx by bz 2
0O O Vy 0 —-by —-bx O 0
A 0 0 0 VW -bz 0 —bx O
Y lo o0 0 0 0 0 o o|’
0 B, Bk 0 -V, VW 0 O
0 B, 0 —-B, -V, 0 V, O
L0 yP O 0 VB O 0 Vil
Vy p O 0O 0 O 0 0]
0 VW O 0 0 by bz 2
0 0 VW 0 0 —-bx 0 ©
. 0 0 0 VW 0 0 —bx O
A, = (51)
0 0 O 0 VW O 0 O
0 Bb =B, 0 0O VW 0 O
0
0

(wherebx = By/4mp, etc., and/ B = (y —1)(V-B)/4r) producingSy, = (A, — A,)Wk.
It was shown by Powell [14] that the eight-wave system with the magnetic monopole we
has the desirable property of reverting to the seven-wave system in 1D since the stre
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of the divergence wave vanishes in 1D (i.By,=const.). It must be noted here that the
modified jacobiand, is not the jacobian of any flux; therefore, this idea works better witl
fluctuation splitting schemes in which no fluxes but only the jacobians are utilized.

Although the magnetic monopole wave is not a real MHD wave and the existence
the divergence source leads to a slightly nonconservative form, their magnitudes are
small numerically. It is noted that although the scheme described here maitaBis- 0
to truncation errors, these errors increas®td) at discontinuities. Utilizing the magnetic
monopole wave and divergence source can mostly solve this problem but cannot to
eliminate it. This is due to the numerical resistivity created by the dissipation. An explanat
of this was given by Fallet al.[34].

In the FS scheme described here, the primitive form of planar MHD equations (whi
0/0z=0, B,, V, =0) in cartesian coordinates is considered. As stated previously, the fi
step in deriving an FS-wave model is to obtain, analytically, the eigensystem of a tv
dimensional jacobian matrix, = A, cosd + B, sind, and then to project the gradients,
VW, onto its right eigenvectors. In the FS scheme, the modified mAtixgiven on the
right of Eq. (51), and its counterpai;, are used to gef\,,

V, pcosd 0 Sing 0 0 0
0 Vi 0 —bysiné  bycosf cost/p
0 0 Vh bxsind —bxcos® sind/p
A, = _ ) , (52)
0 —Bysing Bysing Vh 0 0
0 Bycost —Bycosd 0 Vh 0
| 0 pa’cosd pa’sing 0 0 Vo |

whereV, = Vi cosd + Vy sing is the normal speed in the directionmf anda= ,/y P/p

is the sound speed. Since this matrix defines the planar MHD case, its eigensystem
not include Alfven waves explicitly, although the fast and slow waves do exist and th
include a contribution from the Alfven speed. The eigenvaluespfire then given by
Vh —Us, Vi — Us, Vi, Vi, Vi + Us, Vi + U, Where the only difference from the original set
is the magnetic monopole wave associated by the eigenval\fg (fee Eqgs. (50)). The
straightforward algebra carried out fé, leads to the following column matrix of right
eigenvectors and row matrix of left eigenvectors (normalized Mith=4; ;),

1 0 o P P o
0 0 —Iog fos —I2f Fof
0 0 l3s —I3g 3¢ —I3f
Ru=10 cow r45SiNG F 45 SING ra: SinG ras SING | ° (53)
0 SiNG —r4sC0S0 —Ty5COSH  —I45 COSH  —I4f COSH
|0 O pa? pa? pa? paz |
1 O 0 0 —1/a°7
0 0 coy sing 0
0 -l —I Xsing —Xcosh I
L, = 3f 2f ! 4f ’ (54)
0 |3f |2f Xsing — X cost —|4f
0 g l,s, —Xsind Xcoso l4s
10 —las —lps —Xsind Xcoso lgs |
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(55)
(56)
(57)
(58)
(59)
(60)

where
Fos/f = [Byus/f — 4mp augs Sign(Bn) sind]/Br
rast = [BxUs/t — \/4mp auys Sign(By) cosd]/Br
Fas/t = 4mp (Ui — ug)/Br
las/t = [Sign(BnBy)uyUs/s — auy/ssing]/2a(uf — u?)
las/t = [SIgN(BnBx)UxUs ¢ — auy/s cosd]/2a(u? — u?)
las/t = ay/s/2pa?,

with

oo BByl Uie—Ug Br
® T Vanp T S’ e u? —u2’ 8rp(uf —u2)’

(61)

whereBr = By cost — B, sing is the tangential magnetic field. Note that the argles
not been specified yet and how it can be obtained as a function of field gradients will

presented later.

The MHD equations are nonstrictly hyperbolic since there are some points at which
wave ordering required in strictly hyperbolic systems is destroyed and two or more ws
speeds may coincide. In the FS wave model MHD-A, the slow and entropy eigenvect
become degenerate intwo limits: whBp = 0 and wherB = 0. The first limitis possible in
several cases (i.e., when is along the magnetic stream lines, wHgyw B, andé ~ x /4,
and when By| « 1 andd ~ 0 or when|By| « 1 andd =~ 7r/2). The second limit describes
the Euler case (i.eB = 0), and this eigensystem should reduce to that of the Euler system
this limit. This cannot happen automatically in perpendicular MHD since the Alfven wav
do not exist and the slow waves cannot be combined with them to result in an Eulet
shear wave (see [17] to understand how this works out). Thus, in this limit a switching
required in coding of MHD-A. The singularities in Egs. (55)—(57), for the dase- 0, can

be removed by using the identities
UsUf =aus,  ufa®= (u®—ud)(u® —a?),
whereu can beus or u;. Defining also the parameters

Byy+e¢ SignB, + ¢ af +¢€
= -, H =, o = -,
Br + +/2¢ " By 42 T Br 4 V2

one can see that the nonsingular formsgf, ras;¢, andrss/s can be defined as

ﬁx,y

log = ,Byus - ﬂsign\/ 4 p aug sing, ot = [az cosf + ’By(UZf _ aZ)]/uf
M3 = _.BXUS + ﬂsign\/ 47T,0 aus COSG, I3 = [aZ sing — ﬂx (sz _ az)]/Uf

ras = —dmpasr (U3 —u?),  rar = [(uf —a?)(BxBx + ByBy) + Bra?] /uf,

wheree is an arbitrary small number.

(62)

(63)

(64)
(65)
(66)
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Note that finding a parameter vectar, such that the jacobian&,, B,, andU, are all
linear in its components is rather difficult for MHD; however, this does not mean that it
impossible. For instance, even though Brio and Wu [6] had concluded that Roe’s avera
that satisfies RH conditions did not exist for MHD equations for an arbitraiywas later
shown by Aslan [11] that Roe’s averaging indeed existed for any value@éspite the fact
that no such parameter vector exists for 2D MHD equations as of today, the results in |
led to the idea that the following parameter vector can be used in FS-wave models for Ml

2= [ vr v vov, 2 B e (67)
s X Yo \/ﬁ’ \/ﬁ’ s

whereH* = [E + P*]/p is the total enthalpy. With this choice, most of the terms in the
jacobiansA;, B, become linear in the componentsdbexcept that the terms related to the
momentum and hence energy fluxes include some second order terms which usually il
duce negligible errors. It was found by numerical experiments that a careful design of s
a parameter vector is important for better resolution of the discontinuities for FS methc
although the parameter vector given by Eq. (67) produces rather impressive results fo
model MHD-A, as will be shown in the next section.

As was shown in Section 2.4, the solution to the system of equations can be interpr:
as the superposition of a discrete number of simple waves of which strengths and direct
have not been specified yet. As discussed earlier, this so-called pattern recognition st
carried out by the projection of a two-dimensional state gradient onto the eigenvector:
that the correct discontinuity capturing property will have been embedded in the schem:
1D, consistent analysis of local gradient with the superposition of simple waves shows
one needs 7 wave strengths to match with 7 field gradients in MHD (not®thatonst.
in 1D). Although the eigensystem of the flux jacobian indicates the existence of an entr
and magnetic monopole waves and four magnetoacoustic waves propagating (possib
different angles, model MHD-A includes four additional magnetoacoustic waves but ol
two angles, resulting in 12 parameters. Note that the space gradient has 6 componel
x and 6 components in direction, giving 12 equations. Thus the number of gradients ce
easily be matched with the 10-wave structure. As was stated by Roe [23], who develo
Model-A for Euler equations, it was possible to consider more waves and fix some relati
between them to balance with the right number of free parameters. The reason behin
choice of a set is its capability to resolve complex flow patterns such as intersecting shc
and contacts. One should always remember that wave models based on a rather lir
number of waves may have problems resolving these flows, while a large number of we
may do better but each of them brings its own dissipation into the scheme. Additiona
when more waves than necessary are used, the balance among these waves will be th
mechanism which can drive the residual to zero as steady state is approached (inste
having velocities and strengths vanish [24]). Finally, the equations to solve for the ang
and strengths become too complicated unless additional waves are utilized.

In the FS wave model presented here, both slow and fast magnetoacoustic parts o
total fluctuation are represented by four plane waves travelling orthogonally to one anot
These include the fast waves labeled 5, 6, 9, 10 and the slow waves labeled 3,4, 7,8in F
The eight strengths (four slow and four fast) and an independent diregtiontribute nine
parameters to the model. When the monopole wave strength, the entropy wave strengtt
its direction (,) are introduced as three more parameters, one can match the numbe
unknowns with the number of local gradients. As discussed earlier (see Egs. (42, 43))
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FIG. 2. The locations and directions of possible wave fronts existing in FS-wave model MHD-A for the ca
|Va| < us. The waves labeled 1, 2 are entropy and numerical magnetic monopole waves; and those labeled 5.
10 are fast waves, and those labeled 3, 4, 7, 8 are slow waves.

existence of orthogonal magnetoacoustic waves movingéwithe /2 has useful properties
such as introducing additional dissipation and representing the magnetoacoustic part
flow by a couple of four plane wave sets, each representing one circular wave. It also se
that the assumption of orthogonality of the magnetoacoustic waves is crucial in produc
equations for which a unique solution is possible.

In order to understand the 10-wave structure utilized in model MHD-A, see Fig. 2 for t
positions and the directions of possible wave fronts after a tinéwvhere all wave fronts
were considered to have been located at the origia=ed). When all the contributions from
these waves are considered, the gradiem/a$ written as

6 10
2 1,1z 2 2 = K,k k kK =
VW = agleghe, + agyfgiyNe + Z aglyNg + Z %Gy j2l o4 j2N0+7/25 (68)
k=3 k=7

from which the unknown strengths can be found as follows by means of Eq. (43),

al=Re- (I -VW), o, =0 (12- VW) (69)
af =Ry - (IKSVW), k=3,....6,  af, . p=norn2- (I5,,VW), k=7...,10,
(70)

provided that the propagation anglésandd.) are known. Note that this form is allowed
due to Eq. (42) since the anglég = iy andn,, =y + /2 satisfy the relationy, - iy, = 0.
In this case, the gradients in the directionigfand those in perpendicular directions will
be treated independently.

The propagation angle and the strength of entropy wave can easily be found by multiply
the first row of (54) bWW and projecting it ontai,, (see Eqg. (69)). This results in

Px Py
Mox (Vxy
My)x (Vy)y
(Bx  (Bxy
(By)x  (By)y

Px Py

e = (COSHe, SiNBL)[(1, 0,0, 0,0, —1/a%) 1, (72)
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which turns intowe = CoShe(px — Px/a%) + Sinfe(py — Py/az), giving

_ 2
tande = EZV — Eyﬁzzg . de= \/ — P/a2)° + (py — Py/a2)%.  (72)

Note that, not surprisingly, this is the same result that is obtained by any FS-wave mc
for the Euler equations. How the magnetic monopole wave strength and thefaaggde
obtained can easily be seen by writing Egs. (68) explicitly for the magnetic field gradiel

0B .
axx = agiy COS 0 + [ras(ag +af) 4 ra (@ + af)]sing cosd
— [ras (e, + o) + 1 (e, +@t,,)] sinG cosy (73)
0 By . — + — + N2
3y = oy SINO COSH + [ras(org + g ) + ras(ay + af)]sin“o
+ [ (o, + ) + 1 (rfy, + )] coS'6 (74)
B .
8—xy = agy SiNG cosP — [ras(erg + ad) +ra1(af +af)]cos’ o
— [Fs (o, +dy) + i (o7, + )] sir’6 (75)
0B

a_yy = aqiv SIF 0 — [ras(ag + o) + ra (o + af)]sing coso

+ [rhs(og, +ad ) + 14t (ap, + ot )] sine coss, (76)

where the subscript 90 denotes the orthogonal wavesrgndcan be obtained from
Egs. (66) by replacing with 6 + /2. From Egs. (73) and (76) one immediately has

0 By BBy -
v= (22 + Y ) =V.B, 77
Adiv (3X + 8y> ( )

which shows that the strength of the numerical magnetic monopole wave equals the d
gence of the magnetic field as anticipated earlier. Obviously, this wave has no action w
the divergence condition is exactly satisfied. The effect of this wave becomes signific
only in the regions where spurious magnetic monopoles are created due to the discretiz
errors in the divergence condition (i.e., near discontinuities). In this case, the dissipa
introduced by magnetic monopole wave alters the evolution of magnetic field in suc
way that the discretization errors are reduced significantly and the divergence conditic
satisfied to within the accuracy of the scheme. This observation happens to be suppc
by numerical results that will be presented in the next section.
Using the trigonometric identities, Egs. (73)—(76) lead to the relations

[(Bo)x — (By)y]coS D = agy COS 20 + [ras(erg + od) + ras(@f +af)
—1s(ag, +ad ) =14 (af, +af, )] sinPcosd (78)

[(Bx)y + (By)x] sin2d = Adiv Sinz 20 — [I’45(O[; + Ol;) + Ia¢ (Olf_ + 05?)
—1s(og, +ad ) =14 (ap, +af,)] sihnP cosD, (79)
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from which one obtains
[(B)x — (By)ylcosD + [(Bx)y + (By)x]sin Y = agiv, (80)

resulting in

(By + (By)x_

(Bx — (By)y

This result is independent of the existence of magnetic monopole wave and is rathel
teresting and physically meaningful since it can be derived from another perspective
well. If the magnetic field (including gradients) at two infinitesimally near locationand

r =ro+ 8r (whererg = (e cosy, € sinyr)), are considered, one has

tan® = (81)

aB oB
B(r)=B — X+ —38y + O(2 82
() o(ro) + ™ X+ 3y y +0(2), (82)

whereBo = (Bg cosyr, By sinyr) andsr = (X, 8y) = de(cosyr, siny). Inthis case, the mag-
netic field can be written as

B = [(Bo + (Bx)xd€) cosyr + (By)yde sinyr, (Bp+ (By)yde) sinyr + (By)xde cosy]
(83)

or
BZ = B§ + 2Bo[(By)x COS ¥ + (By)y Sir? ¢ + ((By)y + (By)y) siny cosy]de  (84)

up to first order irfe. Notice that the gradient in the magnetic field has caused deformati
in the original configuration. The principal axis of this deformed ellipse (shown in Fig.
is represented b§? = 0, resulting in

[(By)y - (Bx)x] sin 21:0 + [(Bx)y + (By)x] COSZ‘# =0, (85)

which leads to tan® = ((By)y + (By)x)/((Bx)x — (By)y), the same result as Eq. (84).
Note that this angle also cancels the second term on the right-hand side of Eq. (84)
sulting in the conservation of the magnitude of the magnetic field. This result shows t
the magnetoacoustic waves produced by the FS-wave model MHD-A are aligned with
directions of maximum and minimum magnetic-strain rates in the magnetofluid. This
servation also justifies why orthogonal magnetoacoustic waves are considered in the \
model.

The strengths of the slow and fast magnetoacoustic waves can be found from Eq.
and are given, respectively, by

oV, oV, IV, oV,
34 — 119 [ cost—= +sing—= )19, ( cosd Y + sing—~ 86
% :F3f( ox T ay 2f ox | ay (86)
oV, oV, oV, oV,
5/6 i) X . X 0 y ; y
= 4|5 cosh —= + sing— 15, cos§ —= + sind —=
0 35( ax %y >:F 25( ax " 8y>
X (0B, 9B, q
A (i e N RS 87

whereVP = cosd Py + sing Py isthe pressure gradient. Replacing the afgigth 6 + /2
in Eq. (86) and (87) leads to the remaining streng{ﬁé,/2 andozgfé’o.
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Having the propagation angle of magnetoacoustic waves dependent only upon the r
netic field gradients is interesting. However, one should attempt to find the dependenc
these angles on the velocity gradients as well in order to be able to specify a nonsing
limit of B — 0. This requires the solution of nonlinear relations between the magnetic fie
and velocity gradients. Even though this procedure is very complicated, without this,
models such as MHD-A will perform poorly especially for the high beta flows, where tt
magnetic field pressuréB€/8r) is negligible in comparison with the scalar pressure,
This issue and the performance of the code at subsonic flows and at stagnation point
currently being investigated by the author and will be the subject of subsequent papers

With the results presented in this section, the derivation of FS-wave model MHD-A
thus completed. In summary, the 2D algorithm is implemented as follows. Attfifie
where At is calculated from CFL mix, dy)/[max(|]V)" + max(us)"] for eachT with
local nodeg =1, 2, 3,

—getZ andVZ from Egs. (5) and (26) and obtaWW usingdW /dZ to be used to
evaluate the anglek andd from Eqgs. (72) and (81);

—then for eaclk evaluate the wave strengths using Eqs. (72), (77), (86), and (87) a
the wave speeds() and right eigenvectors f) using Egs. (50) and (53), respectively;

—then use Eq. (47) to update the nodes by upwinding with a procedure explaine
Eq. (20) depending on each flow parameter£ AX cosd + A'§ sing) and on distribution
coefficents 8/ ,.

—After the procedure is repeated for edcandT, the predictor part of Eq. (36) will
have been completed attj will have been obtained;

—finally repeat all the above procedure to obtain the state at new timd.g‘t’émom
the corrector part of Eq. (36).

4. NUMERICAL RESULTS

4.1. Scalar Advection

The first test presented is the scalar nonlinear advection governed by Burger’'s equa
This test case was chosen to show the resolution property of the FS scheme for a s
formation due to converging characteristics. In this problﬁm,(u, 1) was used (i.e., the
nonlinear problenu; + uuy 4+ uy =0 was solved), and the boundary values oh the left,
right, and lower boundaries were takeruas 1.5,u = —0.5, andu = 1.5 — 2x, respectively.
The problem was initialized with = 0 and solved by the scheme described in Section 2.1 c
a 30x 30 square domairx( y: [0, 1]) covered by triangles with right-running diagonals.
The numerical result obtained after the residual reduced to machine zero is depicte
Fig. 3a. Itis seen that the scalar FS scheme described in Section 2.1 (with Superbee lin
is capable of solving steady state nonlinear problems rather accurately, capturing the s
over two or three cells without spreading.

The next test problem is the circular advection with nonuniform veloéity:(y, —X).

In this test problem, the left half of the lower boundary is kept &0 if x < —0.65,u=1

if —0.65<x < —0.35, andu=0 if —0.35< x <0 and the left and upper boundaries are
kept atu=0. This problem was initialized as before and solved on the same grid (k
in this case withx : [—1: 1]). The exact solution for this test problem is a discontinuou
advection (withu =1 between two half circles). As seen from Fig. 3b, this is represente
very well by the numerical solution, and the discontinuity shows only a small amount
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Z

FIG. 3. The contours ofi obtained by scalar advection test cases (obtained on&Dcoarse grid): (a) non-
linear Burger’s problem; (b) circular discontinuous advection problem.

spreading during the transient stage. This shows that the distribution algorithm descr
in Section 2.1 produces better results than those presented in [24].

4.2. Zachary’s Sonic Test Problem with, B- 0

In order to check the performance of the model MHD-A in 1D limit, the strong soni
problem introduced by Zachast al.[7] was solved on a highly elongated isotropic trian-
gular grids of different resolutions. As an initial condition, thexis is divided into two
halves and the following states are defined on both sides fwittb/3):

WL=]1,0,0,0,+47,1000] WR=][0.1250, 0,0, —/4x, 0.1].

With this choice of initial conditions, the strong pressure gradient and the initial discontinu
in the tangential magnetic field gives ris to a left moving rarefaction wave and a ric
moving contact discontinuity behind a fast shock. Sile=0 and practically the 1D
problem is solved on a 2D mesh, the time evolutiong aind By, have the same form
(i.e., ot + (Vxp)x =0and(By): + (Vi By)x =0). Thus across shocks and rarefactidsg,o
should be constant. By using the numerical scheme summarized at the end of Section 3
problem was solved on isotropic grids with four different resolutions (@0, 200x 20,
400x 20, 800x 20), and resulting density anél, profiles att =0.003 are depicted in
Fig. 4 along with the analytical solution as straight line. Although the contact discontinul

Zachary Sonic Test. Model: Planar MHD-A! Isotropic Grid, y=5/3, t=0.003

4
! E p - profile F By - Profile
c +:100 o E
08 A 1200 :
C ®: 400 C
06 meoo| *F
04 [ 4 8L
02 | { 12 |
o L \ \ | I 46 | \ | 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIG. 4. The densityBy, profiles obtained on 109 20, 200x 20, 400x 20, and 800« 20 grids at = 0.003.
The plots show the 1D feature of the solution along the centenyliad®.5 for Zachary’s sonic test problem. The
continuous line shows the analytical solution.
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is slightly smeared, it is seen that the solutions converge to the correct jump conditi
(the jumps inp and By are about 3.9 across the shock) as the grid resolution is increas
Note that since the problem is practically 1D (i.By,= 0 ando By /dy = 0), the magnetic
monopole wave and divergence source have no effect on the solutions.

4.4. Author’s Contact Discontinuity Test

The next test problem is the MHD version of classical Mach9 flow in a rectangular
domain of [Q 4] x [0, 1] introduced by Aslan [13] and it is an excellent test case to show tt
ability of magnetic monopole wave to get physically correct solutions, i.e . ali#rsonic
shock reflecting from the lower boundary. The states to be used on the left and uy
boundaries are (with = 1.4)

WL =[1,2.9,0,/7,0,1/y], WY=[1.46,2.717, —0.405, 2.424, —0.361, 1.223],

such that the RH conditions are satisfied across the shock as found in [13]. Note tha
only action performed on the lower boundary was to\§eib zero to accomplish reflection
and the states on the right boundary were simply untouched during iterations to make
boundary outgoing. The problem was solved numerically onx80 isotropic grid, and
the steady state gray scale imagesBpfobtained without and with magnetic monopole
wave (the divergence source was not used) are shown in Fig. 5. As seen, without
magnetic monopole wave (Fig. 5a) the magnetic field displays magnetic wells and spur
oscillations in the region between the shocks and an unphysical discontinuity across
reflected shock towards the right boundary. In contrast, the solution with the magn
monopole wave and divergence source (Fig. 5b) is excellent since the shock location:
correct, shocks remain uniform and sharp before and after reflection, and no problems «
at the outgoing boundary. These results show that the divergence source has only ar
effect in eliminating problems due to divergence constraints and it is mainly the magne
monopole wave which stabilizes the scheme. Itis noted that this is not the case for the fi
volume-type schemes, which require both the divergence source and magnetic monc
wave for stabilization unless other stabilization methods are not utilized. Thus the met
derived here differs from those that were presented in [9, 13, 14].

4.5. Author’s Blast Wave Test

We now examine the blast wave test (introduced by Aslan [13]) in free space influencec
arbitrarily directed magnetic field. The blast wave is driven by high pressure and high te
perature in a circular region of radius 0.2 within a square regiof€1:0], y: [0: 1]). The

Contact Test: Model: Planar MHD-A: 120x60 Isotropic Grid
By-Gray Scale Images, Steady State Solutions, y=1.4

FIG.5. The gray scale images & obtained by the scheme described by Eq. (36) with and without magnet
monopole wave.
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Blast Test: Model: Planar MHD-A: 80x80 Isotropic Grid
By Contours- Min:-15, Max:15, Inc:0.5, t=0.3

No divB correction With divB correction

FIG. 6. The contours oB, obtained by the scheme described at the end of Section 3 for the blast wave t
without and with magnetic monopole wave and divergence source.

initial conditions are (withy = 1.4)V =0, By, =3, By =1andP™ =50, p'" = 20, P =1,
p°'=1. Figure 6 shows the resultirg}, contours, obtained on an 8080 isotropic grid
with the scheme described at the end of Section 3, with and without the magnetic monoj
wave att = 0.3. Again, the solution without the magnetic monopole wave (Fig. 6a) shov
nonphysical magnetic islands (due to a numerical magnetic monopole created by nume
near the upper left part of the expanding shock, correcting the comments given bstgalle
[34]. After a careful examination of physical variables near singular point, it was found tt
the entropy and circulation grow exponentially during iterations, leading to the nonphysi
dynamics near this point. In most cases, this situation causes the codes to crash whe
phenomenon reaches intolerable levels. The solution with the magnetic monopole w
(Fig. 6b) includes no such problems, thus showing the ability of the magnetic monop
wave to eliminate nonphysical magnetic monopoles and hence nonphysical dynamics.
results show that after the explosion, a rarefaction wave moves inwards and a contact
continuity behind a strong shock move outwards. In addition, the existence of oblic
magnetic field disturbs the symmetry, resulting in stronger horizontal shock. These res
are similar to and as good as those obtained by a finite volume method on quadrilateral ¢
(see [13)).

4.6. Orszag—Tang Vortex Test

For the last test problem, the evolution of the Orszag—Tang vortex system describec
Picone and Dahlburg [33] was considered. This problem simulates the MHD turbulence
offers the investigation of quickly evolving compressible turbulence starting from simg
initial solutions. Itis noted that the resistivity and viscosity used in [33] are totally determin
by the dissipation mechanism of the model MHD-A.

The initial conditions have a periodic structure and invatvpoints (where the fields
vanish) in both the velocity and magnetic field. Uniform initial densjy) @nd pressure
(Po) based on an average Mach numbel(/a) and plasma beta=(P/B?/8m) were se-
lected, and periodic boundary conditions are assumed inbatidy directions. Note that
one must be careful in applying these conditions since all possible updates at the bo
ary points should be taken into account very carefully before advancing to the next ti
level (for example, the node in one corner is affected by the cells adjacent to the of
corners). The initial fields are produced as follows. First, the average velocity and magn
fields (i.e.V@¢= S, [V2 + V] and B3 = Y{\,[ B2 + BZ]) are evaluated from the initial
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Orszag-Tang Vortex. Model: Planar MHD-A: Isotropic Grid
Local Mach Number Contours—-Min:0 Max:1.8 Inc:0.1, y=5/3
80x80 (t=1.5

FIG. 7. Mach number contours obtained by the scheme described by Eq. (36) for the Orszag—Tang vorte»
with the magnetic monopole wave obtained on440 and 80x 80 mesh.

fields:
V = —sin@ry)i + sin@rX)j, B = —v4r sinry)i + V4r sin(4rx)|;  (88)

thenpo and P, are evaluated frompg = y Po(M2/V2), Po=/(B2/87) to be used as the
initial values of the density and pressure. With this choice of initial conditions a wide varie
of initial conditions can be produced. In this paper, the ¢asel0/3 andM =1.0 was
examined on 4& 40 and 80x 80 isotropic triangular grids witl, y: [0, 1] andy =5/3.
The contours of local Mach numbertat 0 andt = 1.5 obtained by the same procedure are
presented in Figs. 7a, and 7b and c respectively. As seen, the results show excellent sy!
try and are similar to those obtained by Dahlburg and Picone, who used physical resist
and viscosity. This suggests that the numerical dissipation built into the model preser
here provides a good representation of the physical diffusive processes. The results :
that the code is also capable of handling th@oints where the flow is almost stationary or
the magnetic field is negligible. The runs at later times show that the accuracy is degrade
subsonic part of flow (near center). This can be improved by using preconditioning, impl
time stepping, or hyperbolic—elliptic splitting techniques.

During the simulations presented thus far, the behaviolw o8 was also monitored.
This term was calculated numerically from

-1
€=<Z|VB|><Z |ixx|m.n1fy|mm> ’ (59)
mesh mesh max Ymax

as done by Evanst al.[32]. In particular, it was found in most of the tests that the numerice
magnetic monopole wave (with the divergence source) has the stabilization effects ag:
the discretization errors of the divergence condition although the problems are not elimin:
completely. This is clearly seen from Fig. 8 (obtained from the Orszag—Tang vortex te
since the relative divergence error reduces almost linearly with the increased grid resolt
(i.e.,e reduces approximately three times as the cell resolution is increased frara@

80 x 80). Itis also seen that the divergence errors always reduce by the end of all iterati
(which are stopped dt=1.5). The curve at the top of Fig. 8 shows the increase in th
time rate of divergence error when the magnetic monopole wave and the divergence sc
are not utilized. This phenomenon drives the creation of spurious magnetic monopc
resulting in nonphysical dynamics. These numerical results also support the need fol
numerical magnetic monopole wave in order to correctly update the magnetic field in si
away that thév - B =0 condition is satisfied to within the truncation errors in the solution
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Orszag-Tang Test: Divergence Error

0.06
0.05 [ }
004 F « v... 20x20: without divB corr.
0.03 E_ - 20x20: with divB corr.
F o, 0 ’ 40%40
002 — e 5 o s oensre
001 |+ »oeeen m
- e
0 L \|||\||| L 1w\||\\‘ L Ll
1 10 100 1000

Iteration Number

FIG. 8. The behaviour of the divergence error obtained with different grid resolutions for the Orszag—Ta
vortex test with and without the magnetic monopole wave.

It seems that, in solving MHD equations, the divergence source and magnetic monoj
wave can be efficiently utilized within the finite difference schemes (see [13-15]) wi
quadrilateral cells and fluctuation splitting schemes with triangular cells [18], although 1
divergence source occasionally introduces too small dissipations and it can be neglecte
most cases.

4.7. Behaviour of Model MHD-A on Unstructured Meshes

The effects of unstructured grid and grid distortion are investigated by performing t
author’s contact discontinuity test on coarse and fine unstructured meshes and on a se\
distorted mesh. The unstructured meshes were generated using the frontal Delaunay
gulation method of Muller [37], by specifying equally spaced points on the boundaries
the solution domain.

In order to compare the results of this test problem with the results obtained on |
structured meshes, the former was solved on a coarse isotropic mesh. The resulting de
contour along with the isotropic mesh used and the time history of the maximum diverge
error are shown in Fig. 9.

Isotropic mesh with 3026 nodes

05,
;

>

04

0.3 a
0.2 Max, Div. Error
0.018
01 0017 |
; 0.016
T 05 1.0 15 oois |-
: : ' ) 0014 |— [
10 o . ) ! 0013 —
a Density contours on isotropic mesh 0.012 |-
0.011 |—
0.01 |—
0.009 |- | | | I N\ A |
05 b 0.008

0 200 400 600 800 1000 1200 1400 1600 1800

0.0 L L L L . . s L
0.0 0.5 1.0 15 20 25 3.0

FIG. 9. The behaviour of model MHD-A on a coarse isotropic structured mesh: (a) isotropic mesh structt
(b) resulting density contour; (c) time history of maximum divergence error.
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FIG. 10. The behaviour of model MHD-A on a coarse and slightly distorted unstructured mesh: (a) me
structure; (b) resulting density contour; (c) time history of maximum divergence error.

Figure 10 shows the results obtained on a coarse and slightly distorted unstructured r
(including approximately the same number of nodes existing in the isotropic mesh shc
in Fig. 9). Comparing the resulting density contour with that of Fig. 9 one can see 1
success of the method on unstructured meshes. In addition, the time history of maxin
divergence error is depicted in Fig. 10c. As seen, the divergence error reduces in time
for this case, showing the ability of model MHD-A to work accurately on unstructure

meshes.

Figure 11 shows the results obtained on a severely distorted unstructured mesh. Itis
that the scheme developed here also works reasonably well on highly distorted unst
tured meshes. The divergence error also reduces in time, although the convergence

longer.
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FIG. 11. The behaviour of model MHD-A on a severely distorted unstructured mesh for the author’s cont

discontinuity test: (a) mesh structure; (b) resulting density contour;

elements used; (d) time history of maximum divergence error.

(c) close-up illustrating the skewness of
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05 Fine unstructured mesh with 4071 nodes
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FIG. 12. The behaviour of model MHD-A on a fine unstructured mesh for the author’s contact discontinui
test: (a) mesh structure; (b) resulting density contour; (c) time history of maximum divergence error.

In order to show the accuracy of the scheme on unstructured meshes, the same pro
was solved on a finer unstructured mesh. The mesh structure and the resulting del
contour along with the divergence error history are shown in Fig. 12. As seen, the re
is excellent since the resolution is increased and the maximum divergence error is red
considerably. All these results presented in this section show that the method present
this paper is able to maintain the planarity of a plane discontinuity on nonuniform (ev
distorted) triangular meshes.

5. CONCLUSION

In this paper, a new fluctuation splitting wave model, MHD-A, for the solutions of plan:
MHD equations was presented. The model has a 10-wave structure consisting of an ent
A new numerical magnetic monopole wave, and a pair of slow and fast magnetoacou
waves and their counterparts moving in perpendicular direction. It was found that |
magnetic monopole wave has a strength equal to the divergence of the magnetic field
that the magnetoacoustic waves propagate in the directions of maximum and minin
magnetic strain rates. The fluctuation splitting scheme, which includes the wave mc
MHD-A, was described in detail, and some numerical results for the scalar case and
MHD equations (Zachary’s sonic test, author’'s contact and blast wave test problems,
Orszag—Tang vortex problem) were presented. The results show that the FS wave r
MHD-A is a robust and efficient model for the solutions of planar MHD equations wit
arbitrarily oriented magnetic fields. No divergence cleaning and similar modifications :
necessary to preserve the divergence free condition on the magnetic field. In addition
method presented is able to maintain the planarity of a plane discontinuity on nonunifc
triangular meshes.
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